

OMNeT++ Community Summit, 2017

INET 4.0
New Features and Migration

University of Bremen – Germany – September 7-8, 2017 Levente Mészáros

Overview

Revisited Network Node Architecture
Introduction of Packet Tags

Redesigned Packet API

Original 2015 presentation

https://summit.omnetpp.org/archive/2015/assets/pdf/OMNET-2015-32-Slides.pdf

Motivation

● Applications must be able to use

– different sockets and protocols simultaneously

– raw sockets and lower layer protocols directly
● Protocols must be able to communicate with multiple

applications and other protocols without implementing a
dispatch mechanism

● Protocols of adjacent OSI layers must be able to
communicate in a many-to-many relationship

● Network nodes must be more reusable to allow configuring
different applications, protocols, and interfaces

Completed Changes

● Merged all application submodule vectors into one vector

● Removed dispatch mechanisms from existing protocols

● Added a new generic MessageDispatcher module

● Added dispatchers to base modules of network nodes

● Added dispatchers to network layer compound modules

● Added protocol registration to existing protocols

● Added interface registration to existing interfaces

● Added raw sockets to allow accessing lower layer
protocols from applications through dispatchers

Revisited Standard Host

Migration Tasks

● Add your protocols to global C++ list of known protocols

● Register your protocols in dispatchers by calling
registerProtocol() in initialize()

● Register your interfaces in dispatchers by calling
registerInterface() in initialize()

● Dispatchers automatically learn where application sockets
are based on intercepted open and close commands

● Add dispatchers to your network node modules if needed

– dispatchers are completely optional, modules can still
be organized in other simpler ways

Overview

Revisited Network Node Architecture
Introduction of Packet Tags

Redesigned Packet API

Original 2015 presentation

https://summit.omnetpp.org/archive/2015/assets/pdf/OMNET-2015-32-Slides.pdf

● Cross-layer communication must be supported for many
useful features

– Applications must be able to control various service
parameters (e.g. hop limit, QoS, outgoing interface)

– Higher layer protocols must be able to control resource
optimization parameters (e.g. transmission power)

– Routing protocols must be able to access link quality
indications (e.g. receive power)

● Protocol modules must be able to control the message
dispatch mechanism

● Protocol modules must specify what protocol of a packet

Motivation

Cross-Layer Communication

Link Layer

Network Layer

Transport Layer

Application Layer

Physical Layer

● Packets
collect
various
request
tags

● Packets
collect
various
indication
tags

● As packets go through the layers

● Control infos are split into reusable tags in MSG files

– tags focus on a single parameterization aspect
● Packets no longer carry control infos, they have several

tags attached instead

– Request tags are passed top-down (Req suffix)

– Indication tags are passed bottom-up (Ind suffix)

– Meta-info tags are passed around (Tag suffix)

● Tags pass through protocol layers

● Tags are removed where they are processed

Completed Changes

● Split your existing packet control info classes in MSG files

– Reuse existing tags if possible

– Create new tags as needed
● Replace control infos with tags for both sending and

processing packets in C++ code

● Remove tags individually where they are processed

● Remove all tags if a packet is reused or it leaves a node

● Add DispatchProtocolReq to instruct the dispatcher
which protocol should process the packet next

● Add PacketProtocolTag to specify what kind of
protocol is carried in the packet

Migration Tasks

Overview

Revisited Network Node Architecture
Introduction of Packet Tags

Redesigned Packet API

Motivation

● Protocols must be able to easily implement

– Fragmentation: truncating packet length is a kludge

– Aggregation: encapsulated packet field is insufficient

– Emulation: processing raw packets separately is bad
● Protocols should not individually implement support for

– byte count, raw bytes, object based, and mixed
packets and streams

● Protocols should not directly use packet serialization

● Packet parts should not contain non-protocol related data

● Packet parts must be serializable on their own

API Goals

● Encapsulation

● Fragmentation

● Aggregation

● Serialization and deserialization

● Duplication and sharing

● Representation selection

● Emulation

● Queueing

● Reassembly and reordering

Representation Goals

● Length based and raw parts

● Optional and variant parts

● Successive and split parts

● Sharing individual parts

● Mixing differently represented parts

● Immutable parts

● Incorrectly received parts

● Incompletely received parts

● Improperly represented parts

Two-Layer API

● Chunks (lower layer API)

– Provide different representations for packet parts

– Can be combined to form larger chunks

– Can be immutable to support efficient sharing
● Containers (upper layer API)

– Provide packets, queues and buffers

– Use one or more chunks for their contents

– Use immutable chunks internally to support sharing

– Merge and split chunks automatically

– Share and reuse chunks automatically

Chunks Represent Packet Parts

● Operations

– Insert and remove at the beginning and at the end

– Peek arbitrary part and query length

– Serialize and deserialize
● Chunks are designed for subclassing by the user

● Chunks can also be used to represent

– Optional parts with separate optional chunks

– Variant parts with subclassing chunks

– Successive parts with a sequence of chunks

Count-Based Chunks

● They are used when the actual data is irrelevant

● BitCountChunk supports bit precision

● ByteCountChunk supports byte precision

61 bits

32 Bytes

Raw Data Chunks

● They are used for packet recording or hardware emulation

● BitsChunk provides raw data support for bits

● BytesChunk provides raw data support for bytes

CD 80 AB 02 75 23 A8 F7 FE B9 8C 04 00 23 FF

101001101011110101010

Field-Based Chunks

● They can still be generated using the MSG compiler

– The packet keyword must be replaced with class

– The class must subclass from FieldsChunk

– The byteLength field is replaced with chunkLength

– Field-Based chunks can form a class hierarchy

Field-Based Chunk Runtime Example

● Some fields are
inherited from
the FieldsChunk
base class

● The raw data is
automatically
displayed if there
is a serializer

Compound Chunks

● SequenceChunk provides concatenation

● SliceChunk provides slicing using offset and length

● cPacketChunk provides support for cPacket

SliceChunk 1

Chunk 1 slice

SequenceChunk 1

Chunk 1 Chunk 2

cPacketChunk 1

cPacket 1

Chunk 1 offset + length

Chunk 1 Chunk 2

cPacket 1

...

Automatic Merging and Splitting Rules

● Count-based chunks are merged and split on demand

● Raw data chunks are merged and split on demand

● Consecutive SliceChunks are merged

● Subsequent SequenceChunks are merged

● Nested SequenceChunks are flattened

● SequenceChunk slice is flattened into a SequenceChunk
potentially containing SliceChunks at the ends

● etc.

Chunk API Usage Example

● ChunkQueue provides FIFO queueing for in order chunks

● Operations

– Peek various parts and query length

– Push at the tail and pop at the head

– Serialize and deserialize
● Representation

– One immutable chunk to support sharing

– Most likely a SequenceChunk or a BytesChunk

Chunk 4Chunk 2Chunk 3 Chunk 1 Chunk 1Queue 1

same

merged

Queueing Chunks

Buffering Chunks

● ChunkBuffer provides buffering for out of order chunks

● Operations

– Peek various regions and query lengths

– Replace a region

– Clear a region
● Representation

– One immutable chunk per region to support sharing

– Most likely a SequenceChunk or a BytesChunk

Chunk 2Chunk 1 Chunk 3E. Empty←Empty Empty →

Empty Chunk 4

clear replace

Reassembling Chunks

● ReassemblyBuffer merges out of order parts into a whole

– First part arrives

– Last part arrives

– Middle part arrives

– Arriving part fills the gap

– Arriving part overwrites existing parts
Chunk 1 Chunk 2

Chunk 1 Empty

Chunk 1 Chunk 2Empty

Chunk 3Chunk 1 Chunk 2E. Empty

Chunk 3Chunk 1 Chunk 2E. Chunk 4

Chunk 4Chunk 5

Reordering Chunks

● ReorderBuffer forms a stream from out of order parts

– Expected part arrives

– Out of order part arrives

– Another out of order part arrives

– Arriving part fills in the gap

– Arriving part overwrites existing parts

Chunk 1 Empty →

Chunk 2Empty Empty →

Chunk 2 Chunk 3 Empty →

Chunk 2Chunk 4

EmptyEmpty

Chunk 3 Empty →Empty

Chunk 5 Empty →

Chunk 1

Chunk 1

Chunk 1

Chunk 1 Chunk 2Chunk 4

INET Packet

● INET provides a new inet::Packet extending cPacket

● Operations

– Peek various parts and query lengths

– Insert and remove at the beginning and at the end

– Serialize and deserialize
● Representation

– Single immutable chunk to support sharing

– Most likely a SequenceChunk or a BytesChunk

Packet Partitioning

● Packet provides header, data and trailer partitioning

● Partitioning is not shared among duplicates

● Partitioning is updated during processing

● Partitioning doesn’t affect the actual packet data

Header Data Trailer

popTrailerOffsetpopHeaderOffset

Packet Processing

● Dispatch in protocol logic must be entirely based on data

– Packet class is always Packet
so dynamic_cast<...>(packet) cannot be used

– Chunk class is always what is requested
so dynamic_cast<...>(chunk) cannot be used

● Forwarding requires chunk duplication due to sharing

– Received packet’s chunks are immutable

– Cannot call setTimeToLive() on immutable chunks

Packet Processing Example

PhyHeader Data

MacTrailer

popTrailerOffsetpopHeaderOffset

Data

popTrailerOffsetpopHeaderOffset

PhyHeader MacHeader

Sharing Chunks Among INET Packets

Packet 1

Packet 2

Packet 4

SequenceChunk 1

Chunk 1 Chunk X Chunk N...

Chunk X

Chunk X

Packet 3

SliceChunk 1 Packet 5

SequenceChunk 2

Chunk 1 Chunk N...SliceChunk 2

Chunk X

Chunk X

Chunk X

● Chunks are shared among containers with shared pointers

Encapsulation Using cPacket

cPacket 2
cPacket 1

cPacket 1

● Maps to encapsulate()

● Result

Encapsulation Using INET Packet

Packet 1

Chunk 1

Packet 1

SequenceChunk 1

Header Chunk 1 Trailer

● Maps to concatenation (most of the time)

● Result

Encapsulated Packet Example

● Using cPacket

● Using INET Packet

Fragmentation Using cPacket

cPacket 2
cPacket 1

cPacket 1

● Maps to encapsulate(), setBitLength() and offset

● Result

● Length of encapsulated packet > length of packet!

Fragmentation Using INET Packet

Packet 1

Chunk 1

● Maps to slicing (most of the time)

● Result
Packet 2

SequenceChunk 1

Header TrailerSliceChunk 1

Chunk 1

Fragmented Packet Example

● Using cPacket

● Using INET Packet

cPacket 3

Aggregation Using cPacket

● Maps to explicitly added fields

● Result
cPacket 4

cPacket 1 cPacket 2 cPacket 5

cPacket 1

cPacket 6

cPacket 2

Aggregation Using INET Packet

Packet 1

Chunk 1

Packet 2

Chunk 2

Packet 3

SequenceChunk 1

Header Chunk 1

● Maps to concatenation (most of the time)

● Result

Header Chunk 2 Trailer

Aggregated Packet Example

● Using cPacket

● Using INET Packet

Serialization

● Serialization is implemented in separate serializer classes

● Mapping is stored in global ChunkSerializerRegistry

– UdpHeader → UdpHeaderSerializer

● Serializers simply convert to and from a raw stream

– May handle multiple chunks

– May handle variant parts

– Must not be recursive

– Must not contain any protocol logic

– Must not compute or verify CRC

Serialization Example

● UDP header serializer

● Examples of getting the raw bytes from a packet

Serialized Packet Example

Emulation Support

● Senders create packets containing one BytesChunk

● Receivers does not handle raw packets in any special way

– No need to dynamic_cast<RawPacket>(packet)

– No need to deserialize packets, happens transparently

– Incorrect interpretation of raw packets is possible!
● Testing emulation support using fingerprints

– Replace packets leaving network nodes with a copy
containing one BytesChunk

Checksum Handling

● Checksums can be

– Disabled

– Declared correct

– Declared incorrect

– Computed
● Checksums are computed and verified in protocol modules

– Parameters are added to the protocol module to control
the checksum handling behavior

● Proper serialization requires disabled or computed
checksums!

Error Representation

● There are several ways to represent packet reception
errors in physical layers

– Marking the whole packet erroneous by calling
cPacket::setBitError()

– Marking an already represented part of the packet
erroneous by calling Chunk::markIncorrect()

– Converting only the erroneous part to a BytesChunk
and altering some of the bytes

– Converting the whole packet to a BytesChunk and
altering some of the bytes

Completed Protocol Changes

● Converted all packets to chunks in MSG files

● Refactored all protocols to use INET packets except for
PacketDrill and SCTP

– Refactored encapsulation, fragmentation and
aggregation implementations

– Replaced queues and buffers with the ones that use
chunks where appropriate

– Refactored data streams (e.g. TCP) to support any
combination of mixed data representation

– Eliminated RawPacket handling that was used to
support emulation

Completed Other Changes

● Refactored all applications to use INET packets

● Refactored all header serializers to use chunks

– Moved CRC computation and verification from
serializers to protocol modules

● Refactored PCAP recording and packet printers

● Updated all examples and tests

● Validated changes using fingerprint tests

Protocol Migration Tasks

● Convert protocol defined packets to chunks in MSG files

● Remove payload fields from chunks in MSG files

● Refactor encapsulate() to insert chunks

● Refactor decapsulate() to pop chunks

● Replace new ...() packet allocations with
std::make_shared<...>() chunk allocations

● Passing chunks around may be insufficient due to sharing

– Pass both packet and chunk as separate arguments
● Take care of the immutability of received packets’ chunks

Serializer Migration Tasks

● Convert packet serializers to chunks serializers

– Remove recursion to encapsulated packet
● Move checksum handling from serializers to protocols

– Add extra CRC mode field to headers

– Add CRC mode parameters to protocol module

– Move generating pseudo headers from serializers to
protocols

Questions and Answers

Levente Mészáros

INET 4.0 is coming

Thank you for your attention!

University of Bremen – Germany – September 7-8, 2017

