

OMNeT++ Community Summit, 2015

Beyond INET 3.0

Levente MészárosIBM Research - Zurich, Switzerland – September 3 - 4, 2015

Overview

Network node architecture refactoring
Cross-layer communication and optimization

Mobility refactoring

Kernel Socket API

Link Layer

Network Layer

Transport Layer

UDP

IPv4

TCP

Application

Ethernet 802.11

IPv6

PPP VLAN

Real World Network Node Architecture

● Real world
applications often
use different kind of
sockets and
protocols
simultaneously

Current Network Node Architecture 1

tcpApp[] udpApp[] pingApp[] tunApp[]

udptcp

ipv4

ppp[]

tun[]wlan[]

eth[]

● Nodes currently have
separate submodule
vectors for different
kinds of applications

● What if an application
wants to use TCP and
UDP simultaneously?

Current Network Node Architecture 2

tcpApp[] udpApp[] pingApp[] tunApp[]

udptcp

ipv4

ppp[]

tun[]wlan[]

?

eth[]

● TUN application are
currently connected to
TUN interfaces only

● TUN applications are
useless without being
connected to other
protocols

● Should we connect
them to TCP, UDP,
IPv4, or all of them?

Current Network Node Architecture 3

tcpApp[] udpApp[] pingApp[] tunApp[]

udptcp

ipv4

ppp[]

tun[]wlan[]

ipv6

eth[]

● Dual network stack
needs extra dispatch
mechanism towards
network protocols

● Where should the
dispatch mechanism
be?

● In general, protocols
of adjacent OSI layers
should be in many-to-
many relationship

?

TCP Applications

tcpApp[] udpApp[] pingApp[] tunApp[]

udptcp

ipv4

ppp[]

tun[]wlan[]

eth[]

● Limitation: TCP
applications
exclusively and
directly connect to
TCP

● Dispatch from TCP
towards applications is
built into TCP

● Dispatch from IPv4
towards TCP is built
into IPv4

UDP Application

tcpApp[] udpApp[] pingApp[] tunApp[]

udptcp

ipv4

● Limitations: UDP
applications
exclusively and
directly connect to
UDP

● Dispatch from UDP
towards applications is
built into UDP

● Dispatch from IPv4
towards UDP is built
into IPv4

ppp[]

tun[]wlan[]

eth[]

Ping Application

tcpApp[] udpApp[] pingApp[] tunApp[]

udptcp

ipv4

● Network layers
currently have
separate gates for
ping applications
(pingIn, pingOut)

● IPv4 needs to do
special ICMP packet
handling to reach ping
applications

ppp[]

tun[]wlan[]

eth[]

New Network Node Architecture

app[]

udptcp

ipv4

ppp[]

tun[]wlan[]

ipv6

dispatcher

dispatcher

dispatcher

eth[]

● Added separate
packet dispatchers
between OSI layers

● Eliminated dispatch
mechanisms from
individual protocols

Protocol Registration Mechanism

app[]

udptcp

ipv4

ppp[]

tun[]wlan[]

ipv6

dispatcher

dispatcher

dispatcher

eth[]

● Protocols have to
register themselves in
the dispatcher
(protocolId, gate)

registers

Interface Registration Mechanism

app[]

udptcp

ipv4

ppp[]

tun[]wlan[]

ipv6

dispatcher

dispatcher

dispatcher

eth[]

● Interfaces also have to
register themselves in
the dispatcher
(interfaceId, gate)

registers

Simpler Network Node Architectures

app

udp

ipv4

eth

udp

ipv4

app[]

udp

ipv4

app[]

dispatcher dispatcher

dispatcher

eth

eth[]

● Dispatchers are
optional

● Modules can still
be organized in
other ways

IPv4 Network Layer Architecture

dispatcher

ip

icmpigmp

arp

● IPv4 network layer also uses a
dispatcher internally

● ARP and IP don't exchange
packets, thus no connection
between them

TCP Application

app[]

udptcp

dispatcher

dispatcher

dispatcher

ipv4 ipv6

ppp[]

tun[]wlan[]

eth[]

● TCP application still
uses a TCPSocket to
send and receive
packets

● Dispatcher learns
where sockets are,
based on socket open
and close commands

UDP Application

app[]

udptcp

dispatcher

dispatcher

dispatcher

ipv4 ipv6

ppp[]

tun[]wlan[]

eth[]

● UDP application still
uses a UDPSocket to
send and receive
packets

● Dispatcher routes
packets based on the
destination protocol

● Destination protocol is
determined from
control info and packet
class

Ping Application

app[]

udptcp

dispatcher

dispatcher

dispatcher

ipv4 ipv6

ppp[]

tun[]wlan[]

eth[]

● Ping application uses
a raw IPv4Socket to
send and receive
ICMP echo packets

● There's no special
network layer gate for
ping applications

Ethernet Application

app[]

udptcp

dispatcher

dispatcher

dispatcher

ipv4 ipv6

ppp[]

tun[]wlan[]

eth[]

● Ethernet applications
can directly
communicate using
ethernet sockets

MANET Routing Application

app[]

udptcp

ipv4

ppp[]

tun[]wlan[]

ipv6

dispatcher

dispatcher

dispatcher

eth[]

● MANET routers now
share the same
network node
architecture

● Routing application
can be replaced from
INI file

● Routing applications
can still use all kinds
of sockets

routing[]

Tunnel Application

app[]

udptcp

dispatcher

dispatcher

ipv4 ipv6

ppp[]

tun[]wlan[]

eth[]

● Tunnel application
simultaneously opens
a TUN device and a
raw IPv4Socket

Tunnel Application 1

app[]

udptcp

dispatcher

dispatcher

ipv4 ipv6

ppp[]

tun[]wlan[]

eth[]

● Node receives packet
from network

Tunnel Application 2

app[]

udptcp

dispatcher

dispatcher

ipv4 ipv6

ppp[]

tun[]wlan[]

eth[]

● Node receives packet
from network

● IPv4 forwards packet
to TUN interface

Tunnel Application 3

app[]

udptcp

dispatcher

dispatcher

ipv4 ipv6

ppp[]

tun[]wlan[]

eth[]

● Node receives packet
from network

● IPv4 forwards packet
to TUN interface

● Application receives
packet from TUN
interface

Tunnel Application 4

app[]

udptcp

dispatcher

dispatcher

ipv4 ipv6

ppp[]

tun[]wlan[]

eth[] ppp[]

tun[]

eth[]

● Node receives packet
from network

● IPv4 forwards packet
to TUN interface

● Application receives
packet from TUN
interface

● Application sends
packet inside another
IPv4 packet

Standard Host 1

Standard Host 2

Overview

Network node architecture refactoring
Cross-layer communication and optimization

Mobility refactoring

Cross-layer design

Link Layer

Network Layer

Transport Layer

Application Layer

Physical Layer

● Quality of
service
parameters

● Resource
optimization
parameters

● Link
quality
indication

● Physical
channel
conditions

Current Cross-Layer Communication

● Applications send UDP packets on a specific interface by
setting the interfaceId in UDPControlInfo

● Currently applications cannot even specify type of service
parameter to control the quality of service functionality

New Cross-Layer Communication

Link Layer

Network Layer

Transport Layer

Application Layer

Physical Layer

● Packets
collect
various
request
tags

● Packets
collect
various
indication
tags

● As packets go through the layers

MACAddressRequest
● source
● destination

QualityOfServiceRequest
● tos

TransmissionRequest
● power
● channel

InterfaceIndication
● id

MACAddressIndication
● source
● destination

ReceptionIndication
● power
● channel

InterfaceRequest
● id

Packet

Tag Examples

Overview

Network node architecture refactoring
Cross-layer communication and optimization

Mobility refactoring

Current Mobility Models 1

● There are mobility models
that do static positioning

● There are mobility models
that move nodes around

● How to combine these
models?

Current Mobility Models 2

● There are group mobility
models with built-in differences
for individual nodes

● How to reuse existing models
for group mobility?

● How to model a docking ship
with passengers moving
around?

Current Mobility Models 3

● Sometimes positioning and
orientation are best expressed
in separate mobility models
(e.g. satellites)

● Sometimes elevation may be
derived from the position on
the surface of the Earth
(e.g. a moving vehicle)

Mobility Superposition

● Support combining different positioning and
orientation models using superposition

● Support start/end time (limits) for mobility models

time

positioning & orientation

initial

individual

perturbation

group

superposition

Coordinate Systems

● Geographic
coordinate system
such as WGS-84

● Abstract Cartesian
coordinate system

● How to express coordinates inside buildings around a city?

● How to express antenna orientation of a vehicle separately?

Questions and Answers

Levente Mészáros

Thank you for your kind attention!

IBM Research - Zurich, Switzerland – September 3 - 4, 2015

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38

