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Real World Network Node Architecture

● Real world 
applications often 
use different kind of 
sockets and 
protocols 
simultaneously



  

Current Network Node Architecture 1
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● Nodes currently have 
separate submodule 
vectors for different 
kinds of applications

● What if an application 
wants to use TCP and 
UDP simultaneously?



  

Current Network Node Architecture 2
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● TUN application are 
currently connected to 
TUN interfaces only

● TUN applications are 
useless without being 
connected to other 
protocols

● Should we connect 
them to TCP, UDP, 
IPv4, or all of them?



  

Current Network Node Architecture 3
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● Dual network stack 
needs extra dispatch 
mechanism towards 
network protocols

● Where should the 
dispatch mechanism 
be?

● In general, protocols 
of adjacent OSI layers 
should be in many-to-
many relationship

?



  

TCP Applications
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● Limitation: TCP 
applications 
exclusively and 
directly connect to 
TCP

● Dispatch from TCP 
towards applications is 
built into TCP

● Dispatch from IPv4 
towards TCP is built 
into IPv4



  

UDP Application

tcpApp[] udpApp[] pingApp[] tunApp[]

udptcp

ipv4

● Limitations: UDP 
applications 
exclusively and 
directly connect to 
UDP

● Dispatch from UDP 
towards applications is 
built into UDP

● Dispatch from IPv4 
towards UDP is built 
into IPv4

ppp[]

tun[]wlan[]

eth[]



  

Ping Application

tcpApp[] udpApp[] pingApp[] tunApp[]

udptcp

ipv4

● Network layers 
currently have 
separate gates for 
ping applications 
(pingIn, pingOut)

● IPv4 needs to do 
special ICMP packet 
handling to reach ping 
applications

ppp[]

tun[]wlan[]

eth[]



  

New Network Node Architecture
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● Added separate 
packet dispatchers 
between OSI layers

● Eliminated dispatch 
mechanisms from 
individual protocols



  

Protocol Registration Mechanism
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● Protocols have to 
register themselves in 
the dispatcher 
(protocolId, gate)

registers



  

Interface Registration Mechanism
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● Interfaces also have to 
register themselves in 
the dispatcher 
(interfaceId, gate)

registers



  

Simpler Network Node Architectures
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● Dispatchers are 
optional

● Modules can still 
be organized in 
other ways



  

IPv4 Network Layer Architecture

dispatcher

ip

icmpigmp
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● IPv4 network layer also uses a 
dispatcher internally

● ARP and IP don't exchange 
packets, thus no connection 
between them



  

TCP Application
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● TCP application still 
uses a TCPSocket to 
send and receive 
packets

● Dispatcher learns 
where sockets are, 
based on socket open 
and close commands



  

UDP Application
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● UDP application still 
uses a UDPSocket to 
send and receive 
packets

● Dispatcher routes 
packets based on the 
destination protocol

● Destination protocol is 
determined from 
control info and packet 
class



  

Ping Application
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● Ping application uses 
a raw IPv4Socket to 
send and receive 
ICMP echo packets

● There's no special 
network layer gate for 
ping applications



  

Ethernet Application
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● Ethernet applications 
can directly 
communicate using 
ethernet sockets



  

MANET Routing Application
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● MANET routers now 
share the same 
network node 
architecture

● Routing application 
can be replaced from 
INI file

● Routing applications 
can still use all kinds 
of sockets

routing[]



  

Tunnel Application
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● Tunnel application 
simultaneously opens 
a TUN device and a 
raw IPv4Socket 



  

Tunnel Application 1
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● Node receives packet 
from network



  

Tunnel Application 2
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● Node receives packet 
from network

● IPv4 forwards packet 
to TUN interface



  

Tunnel Application 3

app[]

udptcp

dispatcher

dispatcher

ipv4 ipv6

ppp[]

tun[]wlan[]

eth[]

● Node receives packet 
from network

● IPv4 forwards packet 
to TUN interface

● Application receives 
packet from TUN 
interface



  

Tunnel Application 4

app[]

udptcp
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● Node receives packet 
from network

● IPv4 forwards packet 
to TUN interface

● Application receives 
packet from TUN 
interface

● Application sends 
packet inside another 
IPv4 packet



  

Standard Host 1



  

Standard Host 2
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Cross-layer design

Link Layer

Network Layer

Transport Layer

Application Layer

Physical Layer

● Quality of 
service 
parameters

● Resource 
optimization 
parameters

● Link 
quality 
indication

● Physical 
channel 
conditions



  

Current Cross-Layer Communication

● Applications send UDP packets on a specific interface by 
setting the interfaceId in UDPControlInfo 

● Currently applications cannot even specify type of service 
parameter to control the quality of service functionality



  

New Cross-Layer Communication

Link Layer

Network Layer

Transport Layer

Application Layer

Physical Layer

● Packets 
collect 
various 
request 
tags

● Packets 
collect 
various 
indication 
tags

● As packets go through the layers



  

MACAddressRequest
● source
● destination

QualityOfServiceRequest
● tos

TransmissionRequest
● power
● channel

InterfaceIndication
● id

MACAddressIndication
● source
● destination

ReceptionIndication
● power
● channel

InterfaceRequest
● id

Packet

Tag Examples
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Current Mobility Models 1

● There are mobility models 
that do static positioning

● There are mobility models 
that move nodes around

● How to combine these 
models?



  

Current Mobility Models 2

● There are group mobility 
models with built-in differences 
for individual nodes

● How to reuse existing models 
for group mobility?

● How to model a docking ship 
with passengers moving 
around?



  

Current Mobility Models 3

● Sometimes positioning and 
orientation are best expressed 
in separate mobility models 
(e.g. satellites)

● Sometimes elevation may be 
derived from the position on 
the surface of the Earth
(e.g. a moving vehicle)



  

Mobility Superposition

● Support combining different positioning and 
orientation models using superposition

● Support start/end time (limits) for mobility models 

time

positioning & orientation 

initial

individual

perturbation

group

superposition



  

Coordinate Systems

● Geographic 
coordinate system
such as WGS-84

● Abstract Cartesian 
coordinate system

● How to express coordinates inside buildings around a city?

● How to express antenna orientation of a vehicle separately?



  

Questions and Answers

Levente Mészáros

Thank you for your kind attention!
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