

A Unified, Scalable, and Extensible
Physical Layer Design for INET

OMNeT++ Community Summit, 2014

Hamburg, Germany – September 2nd, 2014 Levente Mészáros

Motivation

● Incompatibility

● Scalability

● Extensibility

● Maintainability

● Duplicated functionality

● Missing functionality

● Parallel hardware support

Goals

● Unify existing INET and MiXiM physical layer functionality
into a new physical layer model

● Make the new model scalable in terms of level of detail with
respect to signal representation and signal processing

● Make the new model extensible with alternative
implementations for meaningful sub-components

● Port existing MiXiM and INET higher layer functionality to
use the new physical layer

● Support optimistic parallel execution on multiple CPUs and
on highly parallel GPUs

Scaling the Level of Detail

ModelModelStatistical Emulation

ArchitectureArchitecture LayeredFlat

DataDataScalar Dimensional

Performance Accuracy

versus

MessageMessageSome All

Radio ARadio A

Transmitter

Receiver

Energy consumer

Antenna

Extensible Modules

MediumMedium

Path loss

Obstacle loss

Multipath

Propagation

Background noise

Neighbor cache

● Split up radio and medium modules into submodules

● Avoid mixing parameters of different implementations

Radio BRadio B

Transmitter

Receiver

Energy consumer

Antenna

Data Flow

ArrivalArrival

ReceptionReception

TransmissionTransmission

NoiseNoise

InterferenceInterferenceListeningListening

Reception indicationReception indication

Transmission requestTransmission requestMAC frameMAC frame

MobilityMobility

TransmitterTransmitter

PropagationPropagation

AttenuationAttenuation

MediumMedium

ReceiverReceiver

data

processing

Layered Data and Processing Architecture

SignalSignal

Bit Domain

Symbol Domain

Sample Domain

Analog Domain

Packet Domain

TransmitterTransmitter

Modulator

Pulse shaper

DAC

Encoder

ReceiverReceiver

Demodulator

Pulse filter

ADC

Decoder

● Further split up transmitter and receiver modules

Domain Specific Signal Representations

● Packet domain

– packet, packet error rate, packet error
● Bit domain

– bit length, actual bits, bit rate, FEC, CRC, bit error rate, bit error
count, erroneous bits

● Symbol domain

– number of symbols, symbol rate, actual symbols, modulation,
symbol error rate, symbol error count, erroneous symbols

● Sample domain

– number of samples, sampling rate, actual samples
● Analog domain

– space-time coordinates, ranges, scalar, dimensional, RSSI, SNIR

Analog Domain Signal Representations

P[W]

f[Hz]

carrier frequency

power bandwidth

detection range
interference range
communication range

range-based scalar

t[s]

P[W]

power

start end

single dimensional multi dimensional
P[W]

f[Hz]

t[s]

start end

ba
nd

w
id

th

power

pa
ra

lle
l c

om
pu

ta
tio

n

Message Processing

Radio ARadio A Radio BRadio BMediumMedium

radio frame

transmitPacket()

isReceptionAttempted()

isSynchronizationAttempted()

receivePacket()

mac
frame

mac
frame

timer

radio frame

timer

t[s] t[s] t[s]

Optimizing Message Sends

● Range filter

● Radio mode filter

● Listening mode filter

● MAC address filter

transmitter

out of communication range

not in receiver mode

different MAC address

different channel

potential receiver

✖

✖

✖

✖

Parallel Execution

● Parallelization opportunity: computing receptions

– they dominate performance
– they are independent of each other

● Parallel hardware: multi-core, vector instructions, GPU

● Optimistic parallel computing in background threads

● Minimize blocking of main simulation thread

● Efficient only if upcoming receptions are mostly cached

● Discard cached results upon changes on the medium

● Optionally compute arrivals on GPU in main thread

Physical Environment

● 3D geometry

● Physical properties

● Physical objects

● Materials

● Graphical properties

● Initialized from XML

● Efficient object cache

● Used by ostacle loss

Visualization

● Physical objects

● Movement trajectory

● Ongoing transmissions

● Successful receptions

● Obstacle intersections

● Reflection normal vectors

Notable Changes in C++ Source Code

● Extensible classes and data structures

– polymorphism using subclassing and virtual functions
● Physical quantities have compile-time verified SI units

– base units, prefixes, operators, arithmetic expressions
– m, s, mps, W, mW, Hz, MHz, etc.

● Parallel execution needs

– immutable data structures
– purely functional code that is free of side effects

Implemented Functionality: Radio

● Radio modes

– off, sleep, receiver, transmitter, transceiver, switching
● Antenna

– isotropic, constant gain, dipole, interpolating
● Transceiver

– range-based, flat statistical scalar and dimensional
● Power consumer

– based on radio mode, transmitter state and receiver state
● Ported standards

– IEEE 802.11 from INET
– IEEE 802.15.4a UWBIR from MiXiM

Implemented Functionality: Medium

● Propagation

– constant time, constant speed
● Path loss

– free space, breakpoint, log normal, two-ray ground,
Nakagami, Rayleigh, SUI, UWB stochastic

● Obstacle loss

– straight path based dielectric and reflection loss
● Background noise

– isotropic
● Neighbor cache

– neighbor list, spatial grid, quad tree

Implemented Functionality: Geometry

● 3D sets

– line segment, axis aligned box, polygon, plane
● 3D shapes

– sphere, cuboid, convex prism, convex polyhedron
● 3D orientation

– Euler angles, rotation matrix, quaternion
● Caches

– spatial grid, quad tree, BVH tree
● Algorithms

– bounding box, faces and normal vectors, intersection,
visible faces, convex hull, 2D projection

Other Implemented Functionality

● Mobility

– stationary orientation, constant speed rotation
● Power source

– ideal power source, voltage regulated battery
● Physical environment

– environment, object, material
● Physical object cache

– spatial grid, BVH tree

Higher Layer Functionality

● Link layers

– ported IEEE 802.11 from INET
– ported IEEE 802.15.4a from MiXiM
– ported CMSA, BMAC, LMAC from MiXiM
– added Ideal mac

● Network layers

– ported Flood, Probabilistic Broadcast, Wireless Sensor
Network from MiXiM

– untouched INET network layers

Functionality under Development

● Radio

– layered bit precise, GNU software-defined radio
● Medium

– multi-threaded, GPU based scalar, acoustic wireless, wired
● Propagation

– GPU based, receiver movement approximating
● Path loss

– Weibull, Jakes from MiXiM
● Stochastic obstacle loss

● Multipath fading

– UWB stochastic from MiXiM, ray tracing for reflections

Tests and Examples

● All existing wireless fingerprint tests pass in INET

● New tests for reception and interference corner cases

● New examples for

– various MAC and physical layer combinations
– indoor and outdoor scenarios with obstacles
– scaling for parallel execution
– neighbor cache comparison
– object cache comparison

Questions and Answers

Hamburg, Germany – September 2nd, 2014 Levente Mészáros

Thank you for your attention!

