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Motivation

● Incompatibility

● Scalability

● Extensibility

● Maintainability

● Duplicated functionality

● Missing functionality

● Parallel hardware support



  

Goals

● Unify existing INET and MiXiM physical layer functionality 
into a new physical layer model

● Make the new model scalable in terms of level of detail with 
respect to signal representation and signal processing

● Make the new model extensible with alternative 
implementations for meaningful sub-components

● Port existing MiXiM and INET higher layer functionality to 
use the new physical layer

● Support optimistic parallel execution on multiple CPUs and 
on highly parallel GPUs



  

Scaling the Level of Detail
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● Split up radio and medium modules into submodules

● Avoid mixing parameters of different implementations
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Data Flow
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Layered Data and Processing Architecture
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● Further split up transmitter and receiver modules



  

Domain Specific Signal Representations

● Packet domain

– packet, packet error rate, packet error
● Bit domain

– bit length, actual bits, bit rate, FEC, CRC, bit error rate, bit error 
count, erroneous bits

● Symbol domain

– number of symbols, symbol rate, actual symbols, modulation, 
symbol error rate, symbol error count, erroneous symbols

● Sample domain

– number of samples, sampling rate, actual samples
● Analog domain

– space-time coordinates, ranges, scalar, dimensional, RSSI, SNIR



  

Analog Domain Signal Representations
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Message Processing
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Optimizing Message Sends

● Range filter

● Radio mode filter

● Listening mode filter

● MAC address filter

transmitter

out of communication range

not in receiver mode

different MAC address

different channel

potential receiver
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Parallel Execution

● Parallelization opportunity: computing receptions

– they dominate performance
– they are independent of each other

● Parallel hardware: multi-core, vector instructions, GPU

● Optimistic parallel computing in background threads

● Minimize blocking of main simulation thread

● Efficient only if upcoming receptions are mostly cached

● Discard cached results upon changes on the medium

● Optionally compute arrivals on GPU in main thread



  

Physical Environment

● 3D geometry

● Physical properties

● Physical objects

● Materials

● Graphical properties

● Initialized from XML

● Efficient object cache

● Used by ostacle loss



  

Visualization

● Physical objects

● Movement trajectory

● Ongoing transmissions

● Successful receptions

● Obstacle intersections

● Reflection normal vectors



  

Notable Changes in C++ Source Code

● Extensible classes and data structures

– polymorphism using subclassing and virtual functions
● Physical quantities have compile-time verified SI units

– base units, prefixes, operators, arithmetic expressions
– m, s, mps, W, mW, Hz, MHz, etc.

● Parallel execution needs

– immutable data structures
– purely functional code that is free of side effects



  

Implemented Functionality: Radio

● Radio modes

– off, sleep, receiver, transmitter, transceiver, switching
● Antenna

– isotropic, constant gain, dipole, interpolating
● Transceiver

– range-based, flat statistical scalar and dimensional
● Power consumer

– based on radio mode, transmitter state and receiver state
● Ported standards

– IEEE 802.11 from INET
– IEEE 802.15.4a UWBIR from MiXiM



  

Implemented Functionality: Medium

● Propagation

– constant time, constant speed
● Path loss

– free space, breakpoint, log normal, two-ray ground, 
Nakagami, Rayleigh, SUI, UWB stochastic

● Obstacle loss

– straight path based dielectric and reflection loss
● Background noise

– isotropic
● Neighbor cache

– neighbor list, spatial grid, quad tree



  

Implemented Functionality: Geometry

● 3D sets

– line segment, axis aligned box, polygon, plane
● 3D shapes

– sphere, cuboid, convex prism, convex polyhedron
● 3D orientation

– Euler angles, rotation matrix, quaternion
● Caches

– spatial grid, quad tree, BVH tree
● Algorithms

– bounding box, faces and normal vectors, intersection, 
visible faces, convex hull, 2D projection



  

Other Implemented Functionality

● Mobility

– stationary orientation, constant speed rotation
● Power source

– ideal power source, voltage regulated battery
● Physical environment

– environment, object, material
● Physical object cache

– spatial grid, BVH tree



  

Higher Layer Functionality

● Link layers

– ported IEEE 802.11 from INET
– ported IEEE 802.15.4a from MiXiM
– ported CMSA, BMAC, LMAC from MiXiM
– added Ideal mac

● Network layers

– ported Flood, Probabilistic Broadcast, Wireless Sensor 
Network from MiXiM

– untouched INET network layers



  

Functionality under Development

● Radio

– layered bit precise, GNU software-defined radio
● Medium

– multi-threaded, GPU based scalar, acoustic wireless, wired
● Propagation

– GPU based, receiver movement approximating
● Path loss

– Weibull, Jakes from MiXiM
● Stochastic obstacle loss

● Multipath fading

– UWB stochastic from MiXiM, ray tracing for reflections



  

Tests and Examples

● All existing wireless fingerprint tests pass in INET

● New tests for reception and interference corner cases

● New examples for

– various MAC and physical layer combinations
– indoor and outdoor scenarios with obstacles
– scaling for parallel execution
– neighbor cache comparison
– object cache comparison



  

Questions and Answers
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Thank you for your attention!


